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Abstract

We estimate the pricing of corporate Greenhouse Gas (GHG) footprints in the equity mar-

ket using machine learning. The valuation model based on gradient boosted regression

trees (GBRT) substantially outperforms conventional linear valuation models, yielding

estimates of equity valuations that are reasonably close to the observed market data for a

comprehensive global dataset constructed by Jensen, Kelly, and Pedersen (2023), which

includes 250+ accounting-based features of companies listed publicly in 70+ exchanges

around the world. The model allows us to perform valuation attributions of fundamental

features, revealing the higher relevance of corporate carbon footprints for the valuation

of energy sector firms. Employing recent advances in explainable artificial intelligence

(XAI), we document heterogeneous pricing patterns across regions, industry sectors, and

emission levels, and uncovers investors’ distinct views on emissions generated directly by

the firm (Scope 1) vs. indirectly via energy purchases (Scope 2). Our valuation framework

generates equity-market-imputed carbon prices ranging from US$ 30 to 150 per tonne of

GHG Scope 1 emissions in recent years, highlighting the increased importance of corpo-

rate emission in firm valuation.
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1 Introduction

Climate change has become one of the most critical global issues. With stakeholders

clamoring for more information and concrete actions regarding the impacts of commer-

cial enterprises on climate change as well as their risk exposures, corporate leaders and

investors urgently need a clearer understanding of the financial implications of corporate

climate-related features. These implications include both economic impacts of climate

change on corporate operations as well as potential impacts of regulatory changes – re-

sulting from countries’ commitments to reducing Greenhouse Gases (GHG) emissions –

on firms’ future cash flows.

One approach to quantify these impacts is through carbon pricing mechanisms, such

as “carbon taxes” imposed by governments on corporate emissions and “carbon prices”

prevailing in regulated carbon trading schemes such as the European Union (EU) Emis-

sions Trading Scheme (ETS) and Chinese National ETS. Extant studies have examined

these schemes, with a focus on the pricing of current emissions associated with corporate

activities.1 In this paper, we extend this literature by examining how the equity market

prices corporate carbon emissions of publicly listed companies around the world.

Stock prices reflect many factors that are relevant to market participants, including

information regarding discount rates and future cash flows. To disentangle the rele-

vance of these factors, we develop a comprehensive fundamental-based valuation model

that generates robust and accurate estimates of equity valuation. Using this model, we

perform model-based attribution analyses to quantify the relevance of corporate carbon

emissions (relative to other factors, e.g., profitability, investments, capital structure) in

equity market valuation. As an additional feature, the model allows us to generate es-

timates of equity-market-imputed prices of carbon emissions for publicly listed firms in

various markets and sectors over various time periods.

1Zhang and Wei (2010) and Weng and Xu (2018) review the studies on the two carbon markets,
respectively.
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Leveraging on recent developments in artificial intelligence, we develop a machine-

learning-powered fundamental analysis model capable of uncovering complex and nonlin-

ear relations between corporate fundamentals and firm valuation. This model is based

on gradient-boosted regression trees (GBRT), which can (1) accommodate an extensive

set of fundamental variables and (2) harness complex and nonlinear explanatory patterns

across these variables for firm valuation.

We incorporate 259 accounting-based features provided in Jensen, Kelly, and Pedersen

(2023) in the GBRT-powered valuation model.2 We then add corporate emission features

into the model to uncover GHG emissions’ unique contribution to stock market valuation,

beyond its indirect contribution captured by the accounting-based features. Additionally,

our valuation model also accounts for fixed effects including time, country (exchange),

and industry sectors.

Our machine-learning-powered valuation models deliver highly robust explanatory

power for market capitalization (MCAP) and market-to-book equity ratios (M2B) of

publicly listed companies in 90+ exchanges around the world. To facilitate comparisons

with more conventional linear-regression-based valuation models (OLS models, hence-

forth), we calculate the GBRT model’s R-squared (R2) values. We find that the R2s of

the contemporaneous GBRT models are over 95% for MCAP and over 90% for M2B,

much higher than corresponding OLS models incorporating the same comprehensive set

of corporate features and fixed effects. These substantial improvements in explanatory

power illustrate the importance of the GBRT models’ ability to capture complex and

nonlinear relationships between corporate features and equity valuation.3

The GBRT model estimates’ deviations from the observed market values are typically

less than 15% of the observed values, which are about half of the typical deviations of

2For the past 40 years, practitioners and academics have proposed numerous accounting measures
that are indicative of either current stock prices (or valuation multiples) or future stock returns. Jensen,
Kelly, and Pedersen (2023) confirm that many of these are also relevant in global stock markets.

3The GBRT-based valuation model proposed in the current study, which employs a comprehensive
set of explanatory variables, also outperforms the GBRT-based valuation model developed by Geertsema
and Lu (2023) that considers fewer accounting features.
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OLS models’ estimates using comparable feature sets. With the GBRT valuation model

providing a more accurate reflection of equity market participants’ evaluations of firm

features, it would facilitate more precise valuation attributions to these features, including

GHG emission information.4

Our valuation attribution analysis focuses on global firms that disclosed their GHG

emissions during the period from 2003 to 2022. To capture potential changes in investors’

views on climate change and sustainability following the Paris Agreement (December

2015) and potential shifts in sentiments due to the COVID-19 pandemic and the Ukrainian

crisis, we split the sample into three periods: 2003–2015, 2016–2019, and 2020–2022. We

train a separate GBRT model for each of the three periods. We conduct subsample

analysis for each period at the regional or sectoral level. The regional classification that

we consider is (1) the U.S., (2) Europe, and (3) Asia. We also perform a separate analysis

on carbon-intensive firms (i.e., the “Energy+” sector), which includes fossil fuel producers

and electricity generators.

In line with prior studies, we initially examine the firm’s direct GHG emission (i.e.,

Scope 1) as well as the firm’s indirect emissions (i.e., Scope 2) coming from purchase of

electricity, steam, heat, and cooling.5 Since firms’ emission information is released at a

lag relative to the end of the corresponding accounting year (and typically also at a lag

relative to the financial statements), we conservatively assume that such information is

publicly observable 12 months after the accounting year end to avoid the potential look-

ahead bias highlighted in Zhang (2024). Our workhorse valuation models employ the

4In particular, we find that our benchmark linear regression model that incorporates the compre-
hensive set of corporate features performs better in explaining stock valuation than the corresponding
regression models in Bolton and Kacperczyk (2023) and Pedersen, Fitzgibbons, and Pomorski (2021)
that utilize smaller sets of corporate features, highlighting the importance of including as many corporate
characteristics as possible for a valuation attribution analysis.

5Similar to previous studies (Bolton and Kacperczyk 2021a, 2023; Zhang 2024; Pedersen, Fitzgibbons,
and Pomorski 2021), we source firm-level emission data from Trucost. In addition, we also incorporate
emission data from Bloomberg and Refinitiv when the reported emission information is not available
in Trucost. In our main analyses, we drop all firm-year observations with missing reported GHG data,
including firm-year observations with “estimated” GHG values in Trucost. These firm-year observations
are included in our robustness checks, in which we observe qualitatively similar results to our main
analyses.
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emission intensity (i.e., emissions-to-sales ratio) for Scopes 1 and 2 separately to proxy

for corporate carbon footprints, similar to recent works by Pedersen, Fitzgibbons, and

Pomorski (2021) and Zhang (2024).

To facilitate attribution analysis, we employ recent advances in explainable artificial

intelligence (XAI). First, we use the SHapley Additive exPlanations (SHAP) measure pro-

posed by Lundberg and Lee (2017) to examine the contribution of individual fundamental

features to model estimates.6 The SHAP analysis indicates that profitability measures

(e.g., return-on-equity) and dividend payout (i.e., dividends-to-asset ratio) play dominant

roles in explaining M2B ratios. Crucially for our objective, corporate GHG Scope 1 emis-

sion intensity (i.e., emissions-to-sales ratio) exhibits persistent value relevance over time,

ranking in the top 10 important features (out of 261 features) in all three subsample

periods. In contrast, GHG Scope 2 emission intensity ranks between 25 to 50, indicating

that stock market participants view corporate direct emissions (i.e., Scope 1) differently

from their indirect emissions (i.e., Scope 2) in corporate valuation analyses.

Second, we employ the Accumulative Local Effects (ALE) method proposed by Apley

and Zhu (2020). While the SHAP measure is quite useful to describe feature importance

– akin to analysis of “marginal” R2 in conventional models, it is direction-silent and

therefore unable to identify the direction (i.e., the sign) of each individual feature’s effect

on model estimates.7 To uncover the directional effects of carbon emissions on the M2B or

MCAP estimates generated by our valuation model, we employ the ALE method, which

is designed to isolate the effect of individual features on the model estimates, and provides

us with plots that are useful to visualize the (potentially non-linear) impacts of individual

6The SHAP measure is a cooperative game theory-based tool for analyzing feature importance in
machine learning models. Similar to Geertsema and Lu (2023), we calculate the normalized SHAP
measures to perform comparative analysis across subsamples.

7The SHAP measure only allow us to observe the direction of each effect for the estimate associated
with each data point.
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emission variables after controlling for other fundamental variables.8

The ALE plots generated from our valuation models exhibit pronounced nonlinear

relationships between M2B and GHG Scope 1 emission intensity, with slopes varying

across regions and firms with different levels of emission intensity. We also observe that

the relationship patterns vary over time. In particular, the ALE curve for the effects

of Scope 1 emission on M2B is generally convex in all regions with the negative slopes

more pronounced after the Paris Agreement, consistent with excessive emissions from

the operations directly controlled by the firm being regarded as a negative signal by the

market.

The post-Paris Agreement carbon pricing patterns in the U.S. are stronger from those

in Asia and Europe. Interestingly, the ALE curve for U.S. stocks exhibits positive slopes

for firms with low Scope 1 emission intensity – indicating negative carbon pricing for

small emitters, but we do not observe this in the sample of carbon-intensive firms in

the “Energy+” sector. We therefore conjecture that the inconsistencies in recent stud-

ies examining carbon pricing in the equity market that rely on panel linear regression

models (e.g., Bolton and Kacperczyk 2021b, 2023; Aswani, Raghunandan, and Rajgopal

2024; Zhang 2024) are likely manifestations of these complex and nonlinear relationship

patterns, particularly for U.S. stocks.

We further examine how Scope 1 GHG emission levels directly affects market values

of firms by generating another set of ALE plots. Consistent with the patterns for M2B

and direct emission intensity discussed above, these ALE plots show that the levels of

direct emissions (i.e., Scope 1) are negatively associated with MCAP, especially following

the Paris Agreement.

8Within a certain interval for the feature of interest, the ALE method first calculates the effect of the
feature at the observation level by replacing the value of the feature with the corresponding values of
both the right and left interval endpoints while keeping the values of other features constant. Then, it
calculates the mean of these effects across all observations within the interval to obtain the estimate of
local effects in the interval, which are then accumulated over the range of the values of the feature to
produce ALE plots. If ALE is to be performed on a linear regression model, the plots would be straight
lines with slopes corresponding to parameter estimates from the regression.
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Third, to further quantify the effects of carbon emissions on corporate valuation, we

propose a numerical method – built upon the ALE method – to estimate equity-market-

imputed emission prices at the regional level for each subsample period. We find that in

all three regions, the imputed prices for Scope 1 emission are always positive and rising

over time. The imputed emission prices for the most recent (2020–2022) period in the

U.S., Europe and Asia are estimated to be US$ 148.37, 53.94 and 34.16 per tonne of

CO2 equivalent (tCO2e) of emissions, respectively. Remarkably, the imputed Scope 1

emission prices for firms in the “Energy+” sector for the latest period (25.83, 14.38, and

7.54 US$/tCO2e, respectively in the three regions) are much lower than the corresponding

prices for firms in other industries (203.06, 98.34, and 42.48 US$/tCO2e, respectively).

This suggests that the market penalizes the excessive direct emissions of “easier-to-abate”

firms, such as airline companies, much more heavily than those of energy firms whose

entire business models depend entirely on economic activities that produce substantial

GHG emissions.

In the last part of the study, we explore a potential channel through which direct

emissions are negatively associated with corporate valuation. We examine whether direct

emission intensity is associated with future firm profitability, after controlling for other

fundamental aspects of the firm, including current profitability. We document that direct

emission intensity exhibits substantial predictive power for 5-year-ahead return on equity

(ROE): relatively carbon-intensive firms exhibit lower future profitability. Combining

this with the negative pricing effects of emission intensity indicate that equity market

participants had expected the negative cash flow shocks that are uniquely predictable by

firms’ direct carbon emissions, and these expectations were impounded into stock prices

in the global equity markets.

Our study makes following contributions to the literature. First, we propose a robust

equity valuation model that can efficiently harness the complex and nonlinear explanatory

patterns of fundamental information for firm valuation. Second, we evaluate the impor-

6



tance of corporate environmental features relative to conventional fundamental informa-

tion in capturing firm value. Relying on an extensive global sample of firms disclosing

their GHG emissions, we uncover nonlinear and complex effects of carbon emissions on

corporate valuation, highlighting similarities and differences in the pricing of corporate

carbon footprints across stock markets in different regions. Third, we propose a method

to impute the corporate GHG emission prices implied by the equity market, and reveal

the secctoral and regional variations in carbon pricing patterns.

2 Related Literature

Our paper contributes to the literature on climate change and equity market. Early studies

on the value relevance of carbon emissions published in the 2010’s typically examine a

limited sample of GHG reporters in a single region, and employ linear regression models

with a limited set of control variables, which may not be sufficient to isolate the value

effects of carbon emissions from those of conventional fundamental variables.9 More

importantly, these studies focus on the firm-value impacts of carbon emissions prior to

the Paris Agreement. The current study examines the complex and potentially nonlinear

effects of corporate carbon emissions on equity valuation around the world, documenting

cross-industry and regional variations in the effects as well as their time-series dynamics

up to the most recent period.

Our results offer novel perspectives on the ongoing debate about asset pricing impli-

cations of carbon emissions. Bolton and Kacperczyk (2021a, 2023) document that stocks

of carbon-intensive firms tend to earn higher abnormal returns than less carbon-intensive

counterparts not only in the U.S. but also in other countries around the world. They at-

tribute this return spread to carbon-intensive firms’ larger exposure to carbon-transition

9These early studies include Matsumura, Prakash, and Vera-Muñoz (2014), who examine the S&P
500 firms that voluntarily report carbon emissions during the 2006-2008 period; Chapple, Clarkson, and
Gold (2013), who study around 200 European listed firms over the period 2006-2009; Chapple, Clarkson,
and Gold (2013), who use a sample of 58 Australian listed firms in 2007; and Lee, Min, and Yook (2015),
who examine 362 Japanese listed firms between 2003 and 2010.
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risk. However, this carbon return premium is not observed in several contemporaneous

studies (e.g., Garveya, Iyera, and Nashb 2018; In, Park, and Monk 2019; Görgen et al.

2020; Duan, Li, and Wen 2023; Aswani, Raghunandan, and Rajgopal 2024; Zhang 2024),

some of which even document and rationalize the existence of a carbon discount. We

conjecture that these inconsistent results can be driven by the pronounced nonlinear,

complex, and time-varying associations between carbon emissions and firm value that we

document in this study.

In addition to carbon emissions, prior studies have also examined the equity market

pricing of other corporate environmental features such as sulfur dioxide emissions (Hughes

2000; Johnston, Sefcik, and Soderstrom 2008), pollution (Hsu, Li, and Tsou 2023; Cormier

and Magnan 1997; Connors, Johnston, and Gao 2013), and biodiversity risk (Giglio et al.

2023). The proposed framework in this study can also be applied on these features,

although measurements of these environmental features would be quite problematic for

global studies such as this one.

Our paper builds on a voluminous literature that aims to develop equity valuation

models that incorporate fundamental variables, primarily from accounting items in the

financial statements (Bhojraj and Lee 2002; Rhodes–Kropf, Robinson, and Viswanathan

2005; Bartram and Grinblatt 2018, 2021; Geertsema and Lu 2023). Most studies on this

topic rely on linear regressions of either market values (market capitalization or stock

price) or valuation multiples (e.g., market-to-book equity ratio, M2B) on firm fundamen-

tals. A notable exception is Geertsema and Lu (2023), who apply a machine learning

approach to fundamental analysis. Our framework differs from the machine-learning

model proposed by Geertsema and Lu (2023) in two key aspects. First, our study in-

corporates a comprehensive sample of global stocks, similar to Bartram and Grinblatt

(2021), while their analysis is limited to U.S. stocks. Second, our framework incorporates

a more extensive set of conventional fundamental variables along with carbon emission

features. Beyond the methodological differences, this study focuses on valuation attribu-
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tions to carbon emissions, whereas their paper aims to examine the predictive power of

the stocks’ valuation gap suggested by their model for future returns and the associated

investment implications, in line with Bartram and Grinblatt (2018, 2021).

This study also contributes to the growing body of literature that applies machine

learning techniques to finance and accounting research. This strand of literature includes

expected return estimation for stocks (e.g., Kelly, Pruitt, and Su 2019; Gu, Kelly, and Xiu

2020; Freyberger, Neuhierl, and Weber 2020; Gu, Kelly, and Xiu 2021; Chen, Pelger, and

Zhu 2024) and bonds (Bianchi, Büchner, and Tamoni 2021), fund performance analysis

(Kaniel et al. 2023; DeMiguel et al. 2023), firm director selection (Erel et al. 2021),

earnings prediction (Chen et al. 2022), firm quality measurement (Chen, Ke, and Zhao

2024), accounting fraud detection (Bao et al. 2020), and value relevance of accounting

information (Geertsema and Lu 2023; Barth, Li, and McClure 2023).

An important contribution of the current study to this growing literature is the im-

plementation of recent advances in the explainable artificial intelligence (XAI) field. The

recent development of XAI in computer science has resulted in its emergence in finance

(e.g., the pioneering work conducted by Cong, Liang, and Zhang 2019; Cong et al. 2021,

2023), enhancing the transparency and interpretability of outputs produced by machine

learning models. To facilitate interpretability, we incorporate the feature importance

analyses using the SHAP measure developed by Lundberg and Lee (2017) and Lundberg

et al. (2020), and conduct valuation attribution analyses via the visualization of individ-

ual features’ (potentially nonlinear) effects on the target variable via the ALE plots from

Apley and Zhu (2020).
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3 Data and Methodology

3.1 Fundamental information

We obtain 259 stock-level accounting characteristics—based solely on financial statement

items—along with stock market information (e.g., market capitalization) for the primary

security of listed firms worldwide from the global factor dataset described in Jensen, Kelly,

and Pedersen (2023).10 The dataset, which is recorded at a monthly frequency, is sourced

from annual and quarterly COMPUSTAT (North America and Global) and the Center

for Research in Security Prices (CRSP). For quarterly COMPUSTAT flow items, their

values are aggregated over the last four quarters. Accounting characteristics are assumed

to be publicly available four months after the end of an annual or quarterly accounting

period and updated with the most recent data available.

Table A.3.1 provides the list of 259 accounting characteristics used in our study and

their corresponding categories. We classify these accounting variables into 13 categories:

Investment, Issuance, Profitability, Profit Growth, Growth*, Financial Soundness, Pay-

out, Accruals, Efficiency, Liquidity, Capitalization, Solvency, R&D, and Miscellaneous,

based on the cluster definitions of Geertsema and Lu (2023), Hou, Xue, and Zhang (2020),

and Jensen, Kelly, and Pedersen (2023). Appendix A.1 provides more detail on how we

classify the accounting characteristics.

The market capitalization and market-to-book ratio of firms are updated monthly us-

ing stock prices obtained from CRSP and COMPUSTAT datasets. Our empirical analysis

focuses on firms that seem to be more economically relevant, that is, we exclude firms

with total assets below the 20th percentile of NYSE stocks.11

10The dataset was obtained by running the code available at https://github.com/bkelly-lab/

ReplicationCrisis/tree/master/GlobalFactors. We thank the authors for making the code pub-
licly available.

11Similarly, Geertsema and Lu (2023) train their valuation models using U.S. stocks with total assets,
sales and book equity each above the 10th percentile of their sample.
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3.2 Corporate emission information

Annual firm-level GHG emission data, as reported by the firm and measured in tonnes

of carbon dioxide equivalent (tCO2e), is sourced from Trucost, Bloomberg, and Refinitiv

(LSEG) in that order of priority. Specifically, the order of selection is the reported emission

data of Trucost, Bloomberg data, Refinitiv data, and the derived emission data of Trucost.

The emission data estimated by Trucost is not considered in our primary analysis. Firms

with at least one non-missing value for either Scope 1 emissions or Scope 2 emissions

are included in our sample. We merge the emission data with the financial dataset by

using the GVKEY identifier along with ISIN. Restricted by the availability of emission

data, which begins in 2003, our analysis sample period is from 2003 to 2022. Our main

sample contains 6,766 unique stocks (476,556 total stock-month observations) across 77

exchanges. Fig. A.3.1 presents number of stocks by reporting status over the sample

period.

To avoid potential look-ahead bias, as highlighted in Zhang (2024), we conservatively

assume that GHG emission information is publicly available 12 months from the end of

the accounting year. Our empirical exercises focus on Scope 1 and Scope 2 emissions.

Scope 1 emissions are direct GHG emissions that occur from sources that are controlled

or owned by a firm, while Scope 2 emissions are indirect GHG emissions associated with

the purchase of electricity, steam, heat, or cooling (US EPA 2020). To align with the

accounting characteristics (i.e., accounting ratios) and the target variable (i.e., market-

to-book equity ratio or M2B), we use the emission intensity to train the GBRT model,

which is defined as

GHGScope1intensity,i,t =
GHGScope1level,i,t

Salesi,y
, (3.1)

GHGScope2intensity,i,t =
GHGScope2level,i,t

Salesi,y
, (3.2)

where GHGScope1intensity,i,t represents the Scope 1 GHG emission intensity observed for
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firm i at the end of month t following the timing convention above, GHGScope1level,i,t

denotes the observed Scope 1 GHG emission levels, and Salesi,y denotes revenues of firm

i during the corresponding fiscal year y of the emission data. We define Scope 2 intensity

similarly.

3.3 Summary of Scopes 1 and 2 GHG Emission Intensities

When conducting subsample analysis, we divide the sample into regions (Asia, Europe and

the U.S.) or sectors ( “Energy+” sector and “Others”). The “Energy+” sector includes

all firms classified under the “Energy” industry in Fama-French-12 (FF-12) classification

plus those in the electricity-related sectors of the FF-12 “Utility” industry classification.

We also divide the sample period into three subperiods using the adoption of the Paris

Agreement (December 2015) and the onset of the COVID-19 pandemic (December 2019)

as cutoff points. Thus, our study focuses on three sample subperiods: 2003-2015, 2016-

2019, and 2020-2022.

[Insert Table 1 near here]

Table 1 summarizes Scopes 1 and 2 GHG emission intensities, along with the number

of firm-month observations, the number of firms (i.e., GHG reporters), and the valuation

multiple (M2B) across four regions (Global, U.S., Europe, and Asia) during the three

focal sample subperiods. We calculate the emission intensities and M2B at the region-

period level, that is, we divided the total emissions by the total sales aggregated from all

stock-month observations within a specific region (r) and period(p) combination:

GHGScope1intensity,r,p =

∑
i∈r,t∈pGHGScope1level,i,t∑

i∈r,y∈p Salesi,y
, (3.3)

GHGScope2intensity,r,p =

∑
i∈r,t∈p GHGScope2level,i,t∑

i∈r,y∈p Salesi,y
. (3.4)
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The “Firms” column of Panel A suggests that the number of firms disclosing their GHG

emissions has increased over time, both globally and within each of the three specific

regions. The next column shows that U.S. firms typically have higher M2B than firms in

Europe and Asia. For example, the average M2B in the U.S. (3.32) is more than twice as

high as in Europe (1.60) and Asia (1.20) during the 2020-2022 period.

The “Scope 1” column indicates that global firms have GHG Scope 1 emission in-

tensities of 0.36, 0.32 and 0.29 tCO2e per US$1000 of sales. In all three regions, firms

directly emit less GHGs per dollar earned (GHGs/USD) after 2015, which is likely to be

driven by the adoption of the Paris Agreement in 2015. Additionally, Asian firms emit

significantly more GHGs/USD than firms in the other two regions regardless of the pe-

riod. As indicated by the last column, Scope 2 emission intensity of the U.S. and Europe

overall exhibits a stable pattern of around 0.05 tCO2e/$1000 over time. In contrast, Asian

firms during the 2020-2022 period emit at notably high Scope 2 intensity of 0.21, which

might be attributable to low revenues in USD arising from COVID or outliers caused by

relatively poor reporting quality.

Panel B reports GHG emission intensities of energy and electricity producers (i.e.,

“Energy+” firms). Similar to the patterns observed in the full sample, the number of firms

in the “Energy+” sector that report their GHG emissions has increased over time. Po-

tentially due to the lack of growth opportunities compared to other types of firms such as

those in high-tech industries, “Energy+” firms, which are often labelled as “value” firms,

tend to have lower M2B. As expected, “Energy+” firms have higher Scope 1 emission

intensity. Among the three regions, European firms directly emit the least GHGs/USD

across all three subperiod windows. In contrast, Asian firms directly emit substantially

more GHGs/USD (approximately 2 and 1.5 times more than firms in Europe and the U.S,

respectively). One explanation for this is that the energy sector in Asia might be highly

subsidized by the government, requiring less profit compared to its European and U.S.

peers. Additionally, the last column in Panel B indicates that “Energy+”firms’ Scope 2
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emission intensity ranges from 0.02 to 0.07.

3.4 Valuation Model

Our workhorse stock valuation model is based on machine leaning techniques. We employ

the Light Gradient Boosting Machine (LightGBM),12 a high-performance implementation

of Gradient Boosting Regression Trees (GBRT) algorithm described in Appendix A.2.1,

to predict a firm’s log-transformed M2B using the two GHG emission intensity variables

described above along with 259 accounting characteristics (denoted as “Xacct”). The

model can be expressed in a functional form as:

Log(M2Bi,t) = GBRT (Xghg,i,t, Xacct,i,t, Xother,i,t), (3.5)

where Xghg,i,t includes the two GHG emissions intenisities above, and Xother,i,t includes 3

categorical features (year, exchange, and Fama-French 12 industry). The model-implied

M2B is thus the exponential of the log of the M2B implied by the GBRT model:

M̂2Bi,t = Exp( ̂Log(M2Bi,t). (3.6)

The model-implied market capitalization (MCAP) is obtained by multiplying each firm’s

most recent book equity (BE) by their estimated M̂2Bi,t, i.e.,

M̂CAPi,t = Exp( ̂Log(M2Bi,t)×BEi,t (3.7)

12LightGBM is a technique developed by Ke et al. (2017) from Microsoft, which is notable for its
efficiency and scalability in training samples with a large number of observations and features compared
to conventional implementation of GBRT (e.g., XGBoost). It creatively relies on histogram-based al-
gorithms and a leaf-wise tree growth strategy to efficiently reveal complex predictive patterns in data.
Specifically, Ke et al. (2017) propose Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) to implement GBRT and document that LightGBM outperforms the conventional GBRT
implementation in terms of training speed (up to over 20 times faster) without sacrificing accuracy.

14



The GBRT model is robust to missing values and outliers in features. Unlike linear re-

gressions and some other machine learning models such as feed-forward neural networks,

GBRT does not requires imputation of missing values in explanatory variables. As GBRT

is essentially a decision-tree-based approach, it is robust to outliers in features. Never-

theless, we restrict our sample to firms with a monthly M2B ratio between 0.01 and 100

to minimize the potential effect of outliers in the target variable.13

For each subsample period, we train a separate GBRT model with LightGBM. Our

training procedure is described in detail in Appendix A.2. In brief, firm-month obser-

vations in each subsample period (e.g., 2003-2015) are randomly divided into training

and validation subsets using a 4:1 ratio. We use the validation subset to select the best-

performing set of hyperparameters from 1000 candidate sets. The hyperparameter search

spaces and selected set of hyperparameters for each subsample global model are provided

in Table A.3.2 . Then, the model is retrained on the full subsample using the selected set

of hyperparameters.14

3.5 Interpretability of the Valuation Model

The difficulty in interpreting machine learning models, i.e., understanding why a model

produces a certain prediction, deters many researchers from switching from easy-to-

interpret linear regression models to more accurate but complex machine learning models

in economics and finance research. To minimize the tension between accuracy and in-

terpretability, the machine learning literature has introduced several techniques to assist

users in understanding model predictions, especially attribution of features to the target

variable. We employ these techniques in this study. In particular, to analyse relative

importance of GHG emission features and their value relevance, we employ SHapley Ad-

ditive exPlanations (SHAP) proposed by Lundberg and Lee (2017) and Accumulative

13This removes around 0.14% of the stock-month observations after applying the size filter.
14In addition to the validation step, we use several techniques to reduce overfitting in nonlin-

ear models as per LightGBM’s official user guide (https://lightgbm.readthedocs.io/en/latest/
Parameters-Tuning.html).
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Local Effects (ALE) proposed by Apley and Zhu (2020).

3.5.1 SHapley Additive exPlanations (SHAP)

SHAP is a model-agnostic approach used to explain machine learning predictions at the

level of individual data points, such as single stock-month observations in our study.

SHAP measures individual features’ contribution to a model prediction by assigning them

values of Shapley (1951), a solution concept in cooperative game theory. We compute

SHAP values using the tree-SHAP algorithm of Lundberg et al. (2020). For each observa-

tion, a feature’s SHAP value measures how it drives the model prediction towards or away

from the expected value measured by the mean of all model predictions. Furthermore, as

suggested by its name, SHAP values are additive so that values of individual features can

be aggregated to represent the importance of categories. In line with Geertsema and Lu

(2023), we transform raw SHAP values into percentage terms by scaling absolute SHAP

values across all features for each observation so that their sum equals 100%.

3.5.2 Accumulative Local Effects (ALE)

We employ the ALE plots, introduced by Apley and Zhu (2020), to examine the influence

of GHG emission features on corporate valuation. The ALE function for GHG emissions

can be expressed as

ALE(xghg) =

∫ xghg

min(xghg)

E
[∂g(Xghg, X\ghg)

∂Xghg

|Xghg = zghg
]
dzghg − cghg (3.8)

where g(x) denotes a valuation model, xghg denotes the GHG emission feature of interest,

x\ghg denotes the remaining features,15 and cghg is chosen so that the average effect over

the sample is normalized to zero. The partial-derivative term
∂f(Xghg ,X\ghg)

∂Xghg
measures the

local (marginal) effect of xghg on g(x), which is accumulated over the range of the GHG

15x\ghg includes all remaining features. For example, when examining the ALE of Scope 1 emission
intensity on M2B, Scope 2 emission intensity is included into x\ghg.
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emission variable from the minimum value of xghg of all observations to the observed value

of xghg for the specific observation.

In practice, Eq. (3.8) can be estimated by finite differences, that is,

ÂLE(xghg) =

b(xghg)∑
b=1

1

n(b)

∑
i:xi

ghg∈L(b)

[
g(zb, x

i
\ghg)− g(zb−1, x

i
\ghg)

]
− cghg, (3.9)

where z0...zb...zB is a sufficiently fine grid of xghg, b(xghg) denotes the index of bin in which

xghg falls (i.e., xghg ∈ (zb(xghg)−1, zb(xghg)]), L(b) denotes the length of the interval (zb−1, zb],

and n(b) denotes the number of observation falling into the interval (zb−1, zb]. For each

observation i falling into the interval (zb−1, zb], we replace its value of the GHG feature

(xi
ghg) with the values of both right and left interval end-points—zb and zb−1—keeping

the value of remaining variables unchanged, and evaluate the difference of predictions at

these points. We take the average across all observations in that interval to estimate the

local effect. The ALE value is therefore the sum of the estimated local effects starting

from the first interval (with the lowest values of xghg in the sample) to the interval where

observation i is located.

An important property of ALE is that it is model-agnostic, making it applicable to any

type of predictive models, including linear and non-linear models, regardless of whether

they are differentiable. This means that g(x) can represent not only the LightGBM model

for predicting the log of M2B, which is not differentiable like other decision-tree methods,

but also the entire procedure that we used to obtain the predicted M2B and MCAP.

Similarly, xghg can represent either GHG emission levels or GHG emission intensity. Fig. 1

illustrates how to apply ALE to a LightGBM-based valuation model designed to use GHG

emission levels along with other firm characteristics to predict MCAP.

[Insert Figure 1 near here]
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4 Results

4.1 Model Performance

Before analyzing the attribution of firms’ market values to their carbon footprints, we

examine the explanatory power of our machine-learning-powered valuation model by com-

paring it to the linear model. In order to create a level playing field, we employ a valuation

model based on Ordinary Least Squares regression (OLS) that includes the same funda-

mental variables as the GBRT model, i.e., the 259 accounting variables plus 2 GHG vari-

ables, and the hosts of fixed effects. We compare the performance of this comprehensive

linear model to that of our GBRT-based valuation model—introduced in Section 3.4—

in explaining the observed M2B and MCAP values. As performance metrics, we employ

both conventional R-Squared (R2) measure and the Median Absolute Percentage Errors

(MDAPE) measure frequently employed to evaluate machine learning models.

The R2 values for M2B and MCAP are respectively defined as:

R2(M2B) = 1−
∑

i,t(M̂2Bi,t −M2Bi,t)
2∑

i,t(Mean(M2Bi,t)−M2Bi,t)2
and (4.1)

R2(MCAP) = 1−
∑

i,t(M̂CAPi,t −MCAPi,t)
2∑

i,t(Mean(MCAPi,t)−MCAPi,t)2
, (4.2)

where M̂2Bi,t and M̂CAPi,t denote model-implied M2B and MCAP at the stock-month

level. The MDAPE value for MCAP is defined as:16

MDAPE = Median(
∣∣∣M̂CAPi,t −MCAPi,t

MCAPi,t

∣∣∣). (4.3)

The pooled OLS valuation model that we use to predict M2B and MCAP is specified

as:

Log(M2Bi,t) = a+ b×Xghg,i,t + c×Xcontrols,i,t + ϵi,t, (4.4)

16According to Eq. (3.6) and Eq. (3.7), the MDAPE value for M2B is the same as that for MCAP.
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where Xghg,i,t denotes a vector of Scope 1 and Scope 2 emission intensities, and Xcontrols,i,t

denotes a vector of control variables including the firm characteristics identical to the

GBRT model, year-month fixed effects, country-fixed effects and industry-fixed effects.17

After obtaining the predicted log-transformed M2B ( ̂log(M2B)), we use Eq. (3.6) and

Eq. (3.7) to calculate M̂2Bi,t and M̂CAPi,t from the linear model.

Unlike decision-tree approaches such as GBRT, the OLS model is not robust to outliers

and missing values in explanatory variables. Thus, we winsorize all explanatory variables

at the 1% and 99% levels, and replace missing values of accounting characteristics with

their month-exchange-industry medians. In line with the GBRT valuation model, we

estimate three separate models using data from the periods: 2003-2015, 2016-2019, and

2020-2022, respectively. When assessing model performance by region or sector, we eval-

uate the model-implied M2B or MCAP within a specific combination of period-region or

period-sector.

[Insert Table 2 near here]

Table 2 presents comparative results, with Panel A showing model performance by

region and Panel B reporting results by sector. The GBRT model overall exhibits robust

performance, producing estimates of M2B and MCAP that are reasonably close to the

observed market values. For the global sample, it can deliver R2 values of more than

90% for M2B and more than 95% for MCAP. The model produces accurate valuation

estimates, with median valuation errors that are less than 15%. The GBRT model is

stable across regions, achieving similar accuracy for firms in the U.S., Europe and Asia.

In comparing across sectors, although R2 for M2B suggests the GBRT model is more

accurate for the non-“Energy+” sector, the other two metrics indicate the stability of the

model for the two sectors.

17Bolton and Kacperczyk (2023) use the pooled linear regression with the same fixed effects when
estimating the effects of GHG emissions on the log of the book-to-maker ratio for global stocks (see their
Table VII).
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The GBRTmodel consistently outperforms its equally comprehensive OLS counterpart

in explaining M2B and MCAP across regions and sectors in all three periods. In addition

to the GBRT model’s higher R2s in the first four columns, the last two columns of both

panels report that the accuracy of the GBRT model for the two more recent periods is

about twice that of the OLS model in terms of MDAPE—an outlier-robust measure—

regardless of the region or sector.

4.2 Feature Importance

After documenting the relative accuracy of the GBRT model, we now turn the attention

to employing the model to evaluate the importance of corporate GHG emissions in equity

valuation. We measure the importance of each feature by calculating its percentage con-

tribution (in terms of absolute SHAP values, as detailed in Section 3.5.1) to the estimated

(log-transformed) M2B produced by the GBRT valuation model. We further scale each

absolute SHAP value by dividing it by the largest SHAP value, so that the largest value

is equal to 1.

[Insert Figure 2 near here]

Panel A of Fig. 2 presents the 25 most important firm fundamental variables in de-

termining M2B during each of the three subsample periods. The SHAP plots indicate

that the profitability measures – e.g., variants of the return on equity or assets measures

(i.e., earnings-related items scaled by book equity or assets) – play substantial roles in

the equity market valuations of publicly listed firms in all three periods. Additionally,

dividend payout (scaled by their book assets, i.e., “div at”) persistently exhibits strong

value relevance over time, ranking as the fifth, third and third variable in the three sam-

ple periods, respectively. Remarkably, Scope 1 GHG emission intensity consistently ranks

among the top 10 variables.
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Panel B further reports the time-series ranks of Scope 1 emission intensity derived

from two metrics specific to LightGBM: “split” and “gain”. The “split” metric is defined

as the frequency with which a feature is used to make a split in the decision tree, while the

“gain” metric reflects how much the tree benefits from using the feature to create a new

split point in terms of reduction in training loss. Both metrics tend to reach a consensus

with SHAP that Scope 1 carbon intensity is more relevant to equity valuation than the

Scope 2 counterpart.

Additionally, Panel B depicts the ranks of Scope 2 GHG emission intensity in terms

of the three importance metrics. All three metrics indicate that the Scope 2 emission

intensity is less value relevant than Scope 1 emission intensity. In sum, investors have

distinct views on the effects of direct and indirect corporate GHG emissions on equity

valuation.

[Insert Table 3 near here]

Table 3 presents the feature importance implied by the percentage contribution of

absolute SHAP values to predictions at the feature category level for the full universe of

firms, as well as for “Energy+” firms and Non-“Energy+” firms, separately.

Overall, Scope 1 GHG emission remains persistently important with prediction con-

tributions of more than 2% under all three valuation models. It is more important than

Scope 2 emission during all three periods for the entire universe as well as for the two

types of firms considered. Moreover, Scope 1 emission is more value-relevant to firms

in the “Energy+” sector, and its importance is increasing over time. Scope 2 GHG

emission is also more value-relevant to “Energy+” firms. Different from the Scope 1

counterpart, Scope 2 emission first becomes more important after the Paris agreement,

but the importance attenuates during the COVID period though still higher than during

the pre-Paris-agreement period.
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Regarding accounting characteristics, features in the Profitability category are con-

sistently the most important irrespective of period and firm type, but their aggregate

importance significantly drops during the recent period. Notably, the value relevance of

R&D features increases over time, which is consistent with the finding of Barth, Li, and

McClure (2023) that accounting items relating to intangible assets exhibit increased value

relevance.

4.3 Effects of GHG Emission Intensity on M2B

In this section, we examine how GHG emission intensity affects firms’ valuation multiple,

M2B. We employ the ALE plots introduced in Section 3.5.2 to visualize the local effects

of corporate GHG emission intensity on the M2B implied by our GBRT-based valuation

model, after controlling for the effects of firms’ accounting characteristics.18

[Insert Figure 3 near here]

Fig. 3 provides the ALE plots for the effects of Scope 1 GHG (the top three sub-

figures) and Scope 2 GHG (the bottom three) emission intensity on M2B. Each sub-figure

includes firms in the U.S., Europe and Asia during one of the three subsample periods.

For better visualization of the effects, we apply a base-10 log scale to the x-axis.

With the exception of the U.S. ALE curve for the 2016-2019 period—which has near-

flat fluctuating slopes for low emitters but negative slopes for relatively high emitters—all

ALE curves of Scope 1 tend to exhibit downward sloping trends, indicating a negative

association of equity valuation with direct GHG emission intensity. Additionally, M2B

responds to a (10-fold) increase in Scope 1 emission intensity more negatively in all three

regions after the Paris agreement in 2015. That is, the equity market penalizes additional

18The ALE method can be employed for various estimation models. In particular, the ALE plot for
a specific independent variable of interest in a linear regression model is a straight line whose slope is
the estimated regression coefficient on that variable. The ALE method is arguably more suitable than
partial dependence plots (PDP), another popular tool in the Explainable AI literature, for attributing
model predictions to a feature that is correlated with other features (Apley and Zhu 2020).
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direct emission more heavily after the Paris agreement. Among the three regions, the

ALE curves for Asia and Europe almost overlap during each period, suggesting investors’

similar views on the value impacts of direct emissions for firms in these two regions. In

contrast, the market pricing of carbon footprints in the U.S. seems to behave differently,

particularly for high emitters.

In contrast, the ALE curves of Scope 2 are much flatter than those of Scope 1. That

is, given the same level of emission intensity, the financial consequences of a marginal

increase in indirect emissions are generally less severe than those of direct emissions.

Also, the indirect emission information is incorporated into market valuation in a similar

manner across all three regions. These patterns indicate that while the Paris Agreement

presumably significantly affects the value relevance of corporate emission features, in-

vestors continue to put more emphasis on emissions directly controlled by entities, which

is consistent with the results from feature importance analyses reported in Table 3.

[Insert Figure 4 near here]

Given that Scope 1 emission intensity is identified as a more important feature in

determining firm values compared to Scope 2 emission intensity, Fig. 4 further provides

Scope 1’s ALE curves for all firms (the top three sub-figures) and “Energy+” firms (the

bottom three), which are plotted on the raw scale for both y-axis and x-axis. Observations

with emission intensity values above the 95th percentile are omitted. Note that the filter

is applied separately to the “Energy+” firms and other firms.

The top three plots show that the slopes of the ALE curves vary across different levels

of emission intensity for all periods and regions considered, highlighting non-linear and

complex relationships between the intensity of corporate direct GHG emissions and M2B.

Overall, the direction of effects is negative; however, the highest emitters always have

much flatter ALE curves than other firms, irrespective of the region and period.

The bottom three plots confirm that the weak relevance of direct emissions in equity
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valuation is driven by markets’ tolerance to “harder-to-abate” firms, i.e., the Scope 1

emission-intensive “Energy+” firms. Specifically, after the Paris agreement in 2015, direct

emissions of above-median emitters in the “Energy+” sector are weakly correlated with

the valuation ratio across three regions. As for the pre-agreement period, except for the

top-emitting bin of Asia, the associations of M2B with emission intensity for all relatively

large emitters (i.e., bins 7 through 10) in the U.S. and in Asia are slight. Regarding

European firms in the “Energy+” sector, there are negative pricing effects arising from

increases in Scope 1 emission intensity across all bins during the 2003-2015 period

4.4 “Dollar” Effects of Direct GHG Emissions

We have so far focused on valuation ratio (M2B) and emission intensity (GHG emis-

sion/revenues) and found that direct emission intensity is more relevant to equity valua-

tion than intensity of indirect emissions. In this section, we investigate how the level19 of

direct GHG emissions is associated with market values of the emitting firms. We report

the ALE plots for this configuration in Fig. 5 for all firms (the top three sub-figures) and

“Energy+” firms (the bottom three). The level of emissions has a very wide range and a

highly right-skewed distribution. As such, we use the base-10 log scale for the x-axis of

the plots.

[Insert Figure 5 near here]

The top three subplots indicate that direct emissions tend to have a negative effect on

market cap in all three regions regardless of the period. In the U.S., the negative associ-

ation is becoming more pronounced over time. In particular, after the Paris Agreement,

the negative “Dollar” effects for large U.S. emitters from the top three bins tend to be

stronger than their counterparts in Europe and Asia. In other words, the emission costs

19The level of carbon emissions is also a stock characteristic advocated by Bolton and Kacperczyk
(2021a, 2023).
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implied by the reduction in stock prices are the highest in the U.S. particularly for large

emitters.

We perform a similar analysis for firms in the “Energy+” sector. As shown in the

bottom three sub-figures, the pricing patterns for the “Energy+” firms are generally

consistent with but weaker than those for all firms with an exception that direct emissions

are positively associated with market values for the top two bins of European “Energy+”

firms in the recent period. In addition, during the 2016-2019 period, the stock market

tends to price “Energy+” firms’ direct emissions in a globally consistent manner.

[Insert Figure 6 near here]

4.4.1 Model-implied Scope 1 GHG Emission Prices

In this section, we further quantify the effects of direct carbon emissions on corporate

valuation by estimating the market-imputed Scope 1 GHG emission prices implied by our

valuation model. Our estimation is performed using a quantitative model that is built

on the ALE method. Specifically, we first estimate the emission price for each interval

(zb−1, zb] of GHG emission levels using the average marginal change in firm values with

respect to GHG emission levels for all observations within the interval, that is,

P̂b(xghg) =
1

n(b)

∑
i:xi

ghg∈L(b)

[g(zb, xi
\ghg)− g(zb−1, x

i
\ghg)

zb − zb−1

]
. (4.5)

This calculation also represents the slope of the tangent to the ALE curve at bin b. When

estimating the emission price for a particular sample group, we initially divide it into 10

bins based on emission levels. We calculate the emission price for each bin and the take

the average of these bin prices using the average emission levels in each bin as weights.

As such, we place more importance to the estimated prices for firms with higher emission

contributions. The price estimates are reported in Table 4.
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[Insert Table 4 near here]

We perform this estimation of market-imputed emission prices at the regional level

for each subsample period. Panel A of Table 4 indicates that the market-imputed prices

of Scope 1 emissions (in US$ per tonne) are positive irrespective of the region-period

combination and that these prices are rising over time within each region. Prior to the

Paris agreement, the costs of direct emission are similar across the three regions, while

after that, the U.S. has the highest emission price followed by Europe and Asia. The

imputed emission prices from the valuation models for the most recent period are 148.37,

53.94 and 34.16 US$ per tonne of CO2 equivalent (US$/tCO2e) in the U.S., Europe and

Asia, respectively.

It is important to note that, as shown in Panels B and C of Table 4, firms in the

“Energy+” sector tend to have lower imputed carbon prices for their direct emissions

relative to other firms. The imputed Scope 1 emission prices for firms in the “Energy+”

sector for the latest period are 25.83 (U.S.), 14.38 (Europe), and 7.54 (Asia) US$ per

tCO2e, which are much lower than the corresponding prices for non-“Energy+” firms

(203.06, 98.34, and 42.48 US$ per tCO2e in the three regions). This suggests that the

market penalizes the excessive direct emissions of “easier-to-abate” firms, such as airline

companies, much more heavily than those of energy generators whose entire business

models depend entirely on economic activities that produce substantial GHG emissions.

4.5 Do Corporate Carbon Footprints Contain Profitability In-

formation?

In the last part of the study, we explore a potential channel driving the negative associa-

tion between direct emissions and corporate valuation. In particular, we examine whether

direct emission intensity is negatively associated with future firm profitability, after con-

trolling for other fundamental aspects of the firm. In particular, we examine how firm’s
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GHG emission intensity, observed in month t, affects its 5-year-ahead (t+ 60) profitabil-

ity. We employ the GBRT model to predict the return on book equity (ROE), which is

calculated as net income divided by book equity (ni be). Note that “ni be” is the most

important profitability variable in our valuation model, based on its SHAP values. In

addition to Scopes 1 and 2 emission intensities, we include accounting characteristics that

are not in the Profitability and Profit Growth categories as explanatory variables, along

with the three categorical features included in our valuation model. We also include the

lagged target variable (ROE) to take into account potential persistence in profitability.

The model specification can be expressed as follows:

ROEi,t+60 = GBRT (Xghg,i,t, X\profit,i,t, ROEi,t). (4.6)

4.5.1 GHG Emissions as Predictors of Future Profitability

[Insert Figure 7 near here]

The feature importance figure (Fig. 7) based on SHAP values shows that Scope 1

emission intensity is more important than Scope 2 emission intensity in predicting firm

profitability. Specifically, Scope 1 carbon intensity is the fourth important stock char-

acteristic, while Scope 2 carbon intensity is the nineteenth important feature. Also, the

current ROE is unsurprisingly the most important predictor of future ROE followed by

free cash flow scaled by operating cash flow and the dividend payout ratio (i.e., “div at”).

Next, we perform a directional analysis of direct emissions’ relevance in predicting

future profitability by plotting the ALE of Scope 1 emission intensity in Fig. 8 for all firms

(the top sub-figure) and the firms in the “Energy+” industry (the bottom sub-figure). The

x-axis of the figure is on the base-10 log scale. The top plot suggests that in general, Scope

1 emission intensity tends to be positively correlated with future profitability when Scope

1 emission is less intensive (i.e., firms belonging in the first few bins) and negatively

associated with future profitability when the emission intensity is high except for the top
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bin of Asia. This can explain why emission-weighted (market-imputed) Scope 1 emission

prices are positive. Moreover, the negative association between Scope 1 emission intensity

and 5-year-ahead ROE tends to be stronger in the U.S.. These results indicate that at

least some market participants had expected these negative cash flow shocks predictable

by direct GHG emissions of carbon-intensive firms and incorporated these expectations

into ex-ante market valuations of corporate equity.

The bottom graph demonstrates that for above-median emitters in the “Energy+”

industries of the three regions, their Scope 1 emission intensity overall exhibits weaker

negative associations with future profitability. This can account for why the market-

imputed prices of the “Energy+” firms are lower than others.

[Insert Figure 8 near here]

5 Robustness Checks

In this section, we conduct robustness checks for our study. In Section 5.1, we restrict the

sample to the GHG reporters listed in the U.S. and build GBRT-based valuation models

for the three periods. Next, in Section 5.2, we extend our analysis to a more comprehensive

stock universe by adding stocks with GHG emissions estimated by Trucost (including half

a million stock-month more observations) to our primary sample. We first directly use

the estimated GHG values along with the reported values to train three valuation models.

Then, we treat the estimated GHG values as missing and train three valuation models.

Since the GBRT model is robust to missing values in input variables, firms with missing

emission data can be included.
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5.1 U.S.-only Model

A potential concern about our global valuation models is that even after controlling for

country fixed effects, they may not sufficiently account for the differences in regulations,

accounting standards, and investor sentiment among countries. In this section, we restrict

our sample to U.S. stocks. The U.S. stock market is the world’s most economically

important market by total market value. We first examine the accuracy of the U.S.-

only valuation model. Our U.S.-focused machine learning model outperforms the global

counterpart in valuing U.S. stocks. For “Energy+ firms, it can achieve R2 (M2B) values

of 94.6%, 92.8%, and 93.8% for three periods, with median (absolute) valuation error of

5.9%, 5.0%, and 6.9%. For other firms, it can achieve R2 (M2B) values of 95.8%, 98.0%,

and 95.8% for three periods, with median (absolute) valuation error of 6.1%, 4.9%, and

6.4%.

Fig. A.3.2 reports importance of GHG emission intensity in determining M2B relative

to accounting characteristics of firms. Consistent with the global model, Scope 1 emission

intensity is more value relevant than Scope 2 emission intensity.

[Insert Figure 9 near here]

Fig. 9 illustrates the directions of emission intensity’s value impacts using ALE curves

on a log-scaled x-axis. The Scope 1 pattern of the 2016-2019 period shown in the top

three sub-figures is generally consistent with that shown in the global models (Fig. 3). For

the 2003-2015 period, the top three bins behave differently in the two valuation models.

For the recent period, the two valuation models imply similar pricing patterns for large

emitters in bins seven through ten and different patterns for the rest.

Compared to the patterns suggested by the global model (Fig. 3), the U.S.-only model

implies a notable sensitivity of M2B to Scope 2 emission intensity for the recent period.

The direction of the effects transitions from positive for less carbon-intensive firms to

negative for large emitters. For the remaining two periods, the two models tend to suggest
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similar responses of M2B to indirect emission intensity.

5.2 Models with Trucost Estimated GHG Sample

5.2.1 Treating Trucost Estimates as Reported Values

We expand our baseline GHG reporter sample by including stocks with GHG emission

values estimated by Trucost and train three new valuation models. In other words, we

treat Trucost estimates as if they were values reported by these firms.20 We assume that

investors can either observe the estimated GHG values 12 months after the end of the

accounting year or estimate the GHG values in a similar manner to Trucost.

[Insert Figure 10 near here]

Fig. 10 demonstrates the directional effects of emission intensity on M2B. Consistent

with the pattern shown in the reporter-only models (Fig. 3), direct emission intensity is

typically negatively correlated with M2B. M2B shows comparable sensitivities to direct

emission intensity during the first two periods but still exhibits highest sensitivity to Scope

1 emission intensity during the recent period. In addition, indirect emission intensity

overall shows a pretty weak association with M2B across regions and over time, consistent

with the corresponding ALE curves of the reporter-only model. The exception is medium

emitters in the U.S. whose M2B responds to Scope 2 emission intensity in a non-negligible

negative direction.

5.2.2 Treating Trucost Estimates as Missing Values

Using the same sample as in Section 5.2.1, i.e., firms with reported or estimated GHG

values from Trucost, we train three additional valuation models but treat the Trucost-

20Fig. A.3.3 illustrates the time-series importance of emission intensity in capturing M2B based on three
metrics, absolute SHAP value, ’split,’ and ’gain.’ It shows that Scope 1 emission intensity is always one
of the most important features and more important than Scope 2 emission intensity, which is consistent
with the result based on the reporter-only model.
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estimated GHG values as missing values. As the GBRT model can decide to use the

“missing value” status as a criterion for splitting decision trees, we essentially enlarge

our baseline GHG reporter sample using Trucost’s coverage decision of corporate GHG

estimation as the parameter of sample selection.

[Insert Figure 11 near here]

The results from this alternative treatment are reported in Fig. 11, which depicts the

effects of emission intensity on M2B implied by the three new models. The figures show

similar pricing patterns for Scope 1 as those in Fig. 3 which are based on the models

ignoring non-reporting firms. For Scope 2, except for the top-emitting bin of the U.S, the

pricing patterns do not deviate from those implied by the reporter-only model much.

It is important to note that these analyses are relegated to robustness checks as they are

subject to the prevailing concerns that Trucost’s sample selection for estimation coverage

as well as its proprietary estimation methodology may be directly correlated with stock

valuations.

6 Conclusion

This study examines how equity markets incorporate corporate carbon emissions into stock

prices around the world. We propose a comprehensive set of machine-learning-powered

fundamental analysis models capable of not only uncovering complex and nonlinear re-

lations between corporate fundamentals and firm valuation, but also generating imputed

prices of corporate carbon emissions.

The first model is based on gradient boosted regression trees (GBRT) which can

accommodate an extensive set of fundamental variables. Our GBRT valuation model

has a very robust explanatory power for equity valuation of publicly listed firms around

the world. The R2 of the GBRT model is over 95% in explaining variations in market
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capitalizations (MCAP) and over 90% in explaining variations in market-to-book ratios

(M2B), much higher than corresponding linear (OLS) models incorporating the same

comprehensive set of corporate features and fixed effects. The GBRT model estimates’

deviations from the observed market values are less than 15% of the observed values,

which are typically half of the typical deviations of OLS models’ estimates.

With the GBRT valuation model providing a more accurate reflection of equity mar-

ket participants’ evaluations of corporate features, we perform model-based attribution

analyses to quantify the relative importance of corporate carbon emissions. Scope 1 GHG

emission intensity (i.e., emissions-to-sales) ranks within the top ten important features

out of 261 corporate features included in the valuation model in each of the three subpe-

riods of our sample. In contrast, market participants view corporate indirect (Scope 2)

emissions differently, with the rank of Scope 2 GHG emission intensity falling within the

25-50 range.

To uncover the directional effects of carbon emissions on the M2B and MCAP es-

timates generated by our valuation model, we employ the Accumulative Local Effects

(ALE) method proposed by Apley and Zhu (2020), which produces plots to illustrate the

complex and non-linear patterns unveiled by the GBRT model. Indeed, the ALE plots

generated from our valuation models illustrating the impact of carbon emission intensity

on M2B are generally convex in all regions with the negative slopes more pronounced

after the Paris Agreement, particularly for Scope 1 GHG intensity. These patterns indi-

cate that excessive emissions from the operations directly controlled by the firm are more

likely to be regarded as a negative signal by equity market participants.

Our estimation framework produces estimates of equity-market-imputed prices of car-

bon emissions. We find that in all three regions, the imputed equity-based prices for

Scope 1 GHG emissions are positive and rising over time. The imputed emission prices

from the valuation models for the most recent (2020-2022) period are about US$ 30-150

per tonne of CO2 equivalent (tCO2e) of corporate Scope 1 GHG emissions. The imputed
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Scope 1 emission prices for firms in the fossil-dependent “Energy+” sector are much lower

than the corresponding prices for firms in other industries, indicating that equity market

participants penalize excessive direct emissions of “easier-to-abate” firms, such as airline

companies, more heavily than those of energy firms whose entire business models depend

on activities that produce substantial GHG emissions.

We identify an important channel driving the negative association between direct

emissions and corporate valuation: emission intensity is negatively associated with future

firm profitability. Firms with relatively high direct carbon emission intensity exhibit lower

future profitability. This pattern is consistent with equity market participants correctly

anticipating the negative cash flow shocks that are uniquely predictable by firms’ direct

carbon emissions and these expectations impounded into stock prices in the global equity

markets.
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Table 1 GHG Emission Intensity across Regions and over Time

This table presents Scopes 1 and 2 GHG Emission Intensities, along with the number of firm-month
observations, the number of firms, and the market-to-book ratio (M2B) for three sample periods across
four regions (Global, U.S., Europe, and Asia). The emission intensities and M2B are calculated at the
region-period level. Scope 1 (Scope 2) emission intensity (tCO2e per thousand U.S. Dollar) is defined
as the total emissions divided by the total sales aggregated from all firm-month observations within a
specific region-period. Similarly, M2B is calculated as the total market capitalization divided by the total
book equity for all firm-month observations within the same given region-period. The data is restricted
to firms that report GHG emissions. Panel A includes all reporting firms, while Panel B covers the
reporting firms in the “Energy+” sector. The “Energy+” sector includes all firms classified under the
“Energy” industry in Fama-French-12 (FF-12) classification plus those in the electricity-related sectors
of the FF-12 “Utility” industry classification.

Panel A: All Industries

Region Period Observations Firms M2B Scope 1
(

tCO2e
$1,000

)
Scope 2

(
tCO2e
$1,000

)
Global

2003-2015 163,872 2,429 1.72 0.36 0.04
2016-2019 138,915 4,243 1.78 0.32 0.05
2020-2022 173,769 6,517 1.98 0.29 0.10

U.S.
2003-2015 37,669 516 2.12 0.31 0.04
2016-2019 26,973 796 2.58 0.22 0.04
2020-2022 34,243 1,303 3.32 0.17 0.03

Europe
2003-2015 56,642 770 1.51 0.30 0.03
2016-2019 41,218 1,149 1.54 0.27 0.04
2020-2022 43,774 1,529 1.60 0.22 0.03

Asia
2003-2015 52,914 841 1.43 0.51 0.04
2016-2019 53,660 1,784 1.24 0.46 0.05
2020-2022 75,988 2,965 1.20 0.42 0.21

Panel B: “Energy+”

Region Period Observations Firms M2B Scope 1
(

tCO2e
$1,000

)
Scope 2

(
tCO2e
$1,000

)
Global

2003-2015 20,460 266 1.35 1.02 0.03
2016-2019 13,351 366 1.09 1.10 0.06
2020-2022 13,017 465 1.51 0.93 0.07

U.S.
2003-2015 6,439 76 1.58 1.12 0.04
2016-2019 3,631 98 1.41 1.11 0.07
2020-2022 3,733 135 1.51 0.95 0.07

Europe
2003-2015 6,215 82 1.16 0.64 0.02
2016-2019 3,729 97 0.91 0.70 0.06
2020-2022 3,398 121 0.97 0.55 0.05

Asia
2003-2015 5,715 78 1.21 1.94 0.03
2016-2019 4,146 116 0.84 1.65 0.02
2020-2022 4,246 145 0.76 1.42 0.06
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Table 2 Model Performance: GBRT vs OLS

This table reports the performance of Gradient Boosting regression Trees (GBRT) and Ordinary Least
Squares regression (OLS) in predicting Market Capitalization (MCAP) and the Market-to-Book ratio
(M2B). For each sample period (e.g., 2003-2015), we obtain MCAP and M2B predictions for all global
firms in the sample from GBRT and OLS, respectively. We employ Median Absolute Percentage Error
(MDAPE) and R-squared (R2) as performance metrics. For each period, we evaluate the performance
of the global models not only for the full sample (Global) but also for three regions (U.S., Europe, and
Asia) in Panel A or 2 sectors (“Energy+” and Others) in Panel B where the “Energy+” sector includes
all firms classified under the “Energy” industry in Fama-French-12 (FF-12) classification plus those in
the electricity-related sectors of the FF-12 “Utility” industry classification. The LGBM-based valuation
model is introduced in Section 3.4, while the OLS model is the pooled linear regression with year-
month, exchange and industry fixed effects. Additionally, when estimating OLS models, we winsorize all
explanatory variables at the 1% and 99% levels, and replace missing values of accounting characteristics
with their month-exchange-industry medians.

Panel A: Model Performance by Region

Region M2B MCAP

R2 R2 MDAPE

GBRT OLS GBRT OLS GBRT OLS

2003-2015
Global 0.93 0.69 0.97 0.84 0.12 0.26
U.S. 0.92 0.66 0.97 0.84 0.11 0.24
Europe 0.93 0.69 0.96 0.79 0.12 0.26
Asia 0.93 0.74 0.97 0.84 0.12 0.28

2016-2019
Global 0.94 0.63 0.98 0.84 0.11 0.29
U.S. 0.94 0.64 0.98 0.85 0.11 0.28
Europe 0.93 0.48 0.97 0.75 0.11 0.29
Asia 0.94 0.72 0.96 0.74 0.11 0.30

2020-2022
Global 0.90 0.43 0.98 0.79 0.15 0.38
U.S. 0.91 0.40 0.98 0.81 0.15 0.37
Europe 0.89 0.38 0.95 0.65 0.15 0.36
Asia 0.87 0.41 0.95 0.63 0.15 0.40

Panel B: Model Performance by Sector

Region M2B MCAP

R2 R2 MDAPE

GBRT OLS GBRT OLS GBRT OLS

2003-2015
Energy+ 0.86 0.46 0.97 0.86 0.11 0.26
Others 0.93 0.69 0.97 0.83 0.12 0.26

2016-2019
Energy+ 0.86 0.32 0.96 0.85 0.11 0.28
Others 0.94 0.63 0.98 0.84 0.11 0.30

2020-2022
Energy+ 0.83 0.28 0.98 0.78 0.15 0.37
Others 0.90 0.43 0.98 0.80 0.15 0.38
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Table 3 Category Importance

This table presents feature category importance as measured by the percentage contribution of absolute
SHAP values to predictions from three global models (2003–2015, 2016–2019, and 2020–2022) for all
firms (All), firms in the “Energy+” sector and Non-“Energy+” firms (Others). The “Energy+” sector
includes all firms classified under the “Energy” category in Fama-French-12 (FF-12) classification plus
those in the electricity-related sectors of the FF-12 “Utility” industry category. The raw SHAP values
are computed at the stock-month observation level for all features. The percentage contribution of each
feature for each observation is calculated by dividing the absolute SHAP value of the feature by the sum
of absolute SHAP values across all features. Category SHAP, as reported in the table, is the sum of
the percentage SHAP values for all features within a certain category. The “Control” category contains
categorical features of year, country, and FF-12 industry. Table A.3.1 provides details about category
classification.

.

All Energy+ Others

03-15 16-19 20-22 03-15 16-19 20-22 03-15 16-19 20-22

GHG

Scope 1 2.17 2.12 2.44 3.36 3.51 4.05 2.00 1.97 2.30
Scope 2 0.39 0.63 0.44 0.60 1.00 0.65 0.36 0.59 0.42

Accounting Characteristics

Profitability 45.95 46.46 31.92 40.68 38.04 27.11 46.71 47.40 32.32
Investment 4.92 4.61 7.50 5.24 4.79 7.19 4.88 4.59 7.52
Payout 5.55 6.85 6.25 5.29 7.70 6.77 5.59 6.76 6.21
Issuance 4.13 2.90 4.90 4.58 3.12 4.87 4.06 2.87 4.90
Profit Growth 3.59 4.05 5.25 3.72 5.15 5.62 3.58 3.93 5.21
Growth∗ 2.13 2.05 3.24 2.29 2.29 3.22 2.11 2.02 3.24
Accruals 0.35 0.34 0.42 0.37 0.35 0.43 0.35 0.33 0.42
R&D 0.69 1.11 1.44 0.52 0.67 1.07 0.71 1.16 1.47
Capitalization 0.77 1.13 1.91 0.66 1.11 1.62 0.78 1.13 1.93
Efficiency 3.02 2.60 2.05 3.39 3.14 2.19 2.97 2.54 2.04
Financial Soundness 2.62 2.83 3.83 2.81 3.31 4.02 2.59 2.77 3.81
Solvency 1.24 1.97 2.29 1.07 1.70 2.21 1.26 2.00 2.30
Liquidity 1.02 1.01 1.22 1.11 1.17 1.18 1.01 0.99 1.22
Miscellaneous 5.11 4.96 5.06 5.17 4.71 4.63 5.10 4.99 5.10
Control 16.35 14.38 19.86 19.13 18.23 23.17 15.95 13.95 19.58
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Table 4 Model-implied Scope 1 GHG Emission Prices

This table presents the estimated Scope 1 GHG emission prices at the period-region level, covering three
regions (U.S., Europe and Asia) during three periods: 2003–2015, 2016–2019, and 2020–2022. We first
divide a specific subsample into 10 bins and calculate the price for each bin, which is measured by the
average marginal effects of Scope 1 emission levels on model-implied market capitalization. The bin
prices are then averaged using the average emission levels of bins as weights. The detailed estimation
procedure can be found in Section 4.4.1. The estimated emission prices for all firms in a certain period-
region combination are reported in Panel A (“All”), while those for firms in the “Energy+” sector and in
Non-“Energy+” sectors (“Others”) are reported in Panel B and Panel C, respectively. “Energy+” sector
includes firms in the “Energy” industry category as per Fama-French-12 (FF-12) classification as well as
those in the electricity-related sectors of the FF-12 “Utility” industry category. All results are based on
one of three global models trained using all firms in a specific period.

USA Europe Asia

Panel A: All Firms
2003-2015 12.68 11.67 14.42
2016-2019 41.34 23.29 16.88
2020-2022 148.37 53.94 34.16

Panel B: Energy+ Firms
2003-2015 5.13 29.86 7.88
2016-2019 7.32 8.18 5.68
2020-2022 25.83 14.38 7.54

Panel C: Non-Energy+ Firms
2003-2015 22.69 10.40 24.95
2016-2019 49.09 34.08 27.38
2020-2022 203.06 98.34 42.48
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Figure 1 Flow Chart: Calculating ALE of GHG Emission Levels on Market Capitalization

This flow chart illustrates how we calculate accumulative local effects (ALE) of an emission level variable
(xghglevel

) on market capitalization (mcap) predicted by our GBRT-based valuation model introduced in
Section 3.4.
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Figure 2 Feature Importance

Panel A shows the top-25 important features according to absolute SHAP values derived from three
GBRT-based valuation models (each covering 2003–2015, 2016–2019 and 2020–2022 subperiods, respec-
tively) that fit the natural logarithm of M2B. Panel B depicts the time-varying importance of Scope 1
emission intensity (left) and Scope 2 emission intensity (right) in determining log(M2B).The importance
is measured by the rank of Scope 1 or 2 emission intensity in each subsample model according to absolute
SHAP values, “split” and “gain,” where “split” refers to the number of times a variable is used to make a
split in decision trees, and “gain” refers to the reduction in training loss resulting from using the feature
to create a new split point.

Panel A: Top-25 Important Variables in the Valuation Model for Predicting log(M2B)

Panel B: Importance of GHG Emission Variables Over Time
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Figure 3 ALE Plots: Market-to-Book Ratio vs GHG Emission Intensity (x-axis in the log scale)

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
(Top) and Scope 2 emission intensity (Bottom) on the market-to-book ratio for firms in the U.S., Europe
or Asia during three periods: 2003–2015, 2016–2019, and 2020–2022. The x-axis is in the base-10 log
scale. Each ALE plot is supplemented with a chart below showing the distribution of the GHG emission
intensity variable. All plots are based on one of three subsample global models.
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Figure 4 ALE Plots: Market-to-Book Ratio vs Scope 1 Emission Intensity

This figure shows Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
on the market-to-book ratio for all firms (Top) and “Energy+” firms (Bottom) in the U.S., Europe or
Asia during three periods: 2003–2015, 2016–2019, and 2020–2022. Observations with emission intensity
values above the 95th percentile are omitted for better visualization. The filter is applied separately to
“Energy+” firms and non-“Energy+” firms. “Energy+” firms refer to all firms in the “Energy” industry
category as per Fama-French-12 (FF-12) classification as well as those in the electricity-related sectors of
the FF-12 “Utility” industry category. Each ALE plot is supplemented with a chart below showing the
distribution of the GHG emission intensity variable. All plots are based on one of three subsample global
models.
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Figure 5 ALE Plots: Market Cap vs GHG Emission Levels (x-axis in the log scale)

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission levels
(Top) and Scope 2 emission levels (Bottom) on market capitalization for firms in the U.S., Europe or
Asia during three periods: 2003–2015, 2016–2019, and 2020–2022. The x-axis is in the base-10 log scale.
Each ALE plot is supplemented with a chart below showing the distribution of the GHG emission level
variable. All plots are based on one of three subsample global models.
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Figure 6 Market Cap vs Scope 1 GHG Emission Levels (x-axis in the log scale)

This figure shows Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission levels on
market capitalization for all firms (Top) and “Energy+” firms (Bottom) in the U.S., Europe or Asia
during three periods: 2003–2015, 2016–2019, and 2020–2022.“Energy+” firms refer to all firms in the
“Energy” industry category as per Fama-French-12 (FF-12) classification as well as those in the electricity-
related sectors of the FF-12 “Utility” industry category. The x-axis is in the base-10 log scale. Each ALE
plot is supplemented with a chart below showing the distribution of the GHG emission level variable. All
plots are based on one of three subsample global models.
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Figure 7 Feature Importance in GBRT Model for Predicting Future ROE

This figure presents the top-25 important features according to absolute SHAP values derived from a
GBRT models (2003–2022) that predict firm’s 5-year-ahead ROE. The features are measured during the
period from 2003 to 2017, whereas the 5-year-ahead ROE is measured from 2008 to 2022
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Figure 8 ALE Plots: 5-year-ahead ROE vs GHG Emission Intensity (x-axis in the log scale)

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
(Top) and Scope 2 emission intensity (Bottom) on 5-year-ahead ROE for firms in the U.S., Europe or Asia
during the 2003–2022 period. The features are measured during the period from 2003 to 2017, whereas
the 5-year-ahead ROE is measured from 2008 to 2022. The x-axis is in the base-10 log scale. Each ALE
plot is supplemented with a chart below showing the distribution of the GHG emission intensity variable.
All plots are based on the full-sample global model.
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Figure 9 ALE Plots: Market-to-Book Ratio vs GHG Emission Intensity (x-axis in the log scale) – U.S.
Sample

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
(Top) and Scope 2 emission intensity (Bottom) on the market-to-book ratio for U.S. firms during three
periods: 2003–2015, 2016–2019, and 2020–2022. The x-axis is in the base-10 log scale. Each ALE plot is
supplemented with a chart below showing the distribution of the GHG emission intensity variable. All
plots are based on one of three subsample models using U.S. stocks.
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Figure 10 ALE Plots: Market-to-Book Ratio vs GHG Emission Intensity (x-axis in the log scale) –
Reported GHG Values & Trucost Estimates

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
(Top) and Scope 2 emission intensity (Bottom) on the market-to-book ratio for firms in the U.S., Europe,
or Asia during three periods: 2003–2015, 2016–2019, and 2020–2022. The x-axis is in the base-10 log
scale. Each ALE plot is supplemented with a chart below showing the distribution of the GHG emission
intensity variable. We expand the GHG reporter sample by including stocks with GHG emission values
estimated by Trucost. All plots are based on one of three subsample global models.
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Figure 11 ALE Plots: Market-to-Book Ratio vs GHG Emission Intensity (x-axis in the log scale) –
Reported GHG Values & Trucost Estimates Treated as Missing

This figure includes Accumulative Local Effect (ALE) plots for the effects of Scope 1 emission intensity
(Top) and Scope 2 emission intensity (Bottom) on the market-to-book ratio for firms in the U.S., Europe,
or Asia during three periods: 2003–2015, 2016–2019, and 2020–2022. The x-axis is in the base-10 log
scale. Each ALE plot is supplemented with a chart below showing the distribution of the GHG emission
intensity variable. We expand the GHG reporter sample by including stocks with GHG emission values
estimated by Trucost but treat the estimated values as missing. All plots are based on one of three
subsample global models.
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Appendix

A.1 Accounting Characteristics and Cluster Classification

Table A.3.1 presents names and clusters of 258 accounting characteristic along with firm

age used in our study. Geertsema and Lu (2023) mainly rely on financial ratios con-

structed by Wharton Research Data Services (WRDS), which classify their ratios into

6 categories: Profitability, Capitalization, Financial Soundness, Solvency, Liquidity, and

Efficiency. Note that WRDS’ financial ratios are included in the dataset of Jensen, Kelly,

and Pedersen (2023). Geertsema and Lu (2023) create another category, Growth, for

variables measuring changes in accounting items. We break down their Growth category

into Investment (e.g., asset growth), Profit Growth (e.g., change in Return on Equity),

Accruals (e.g., change in net working capital), Payout (i.e., growth in equity or dividend

payout), Issuance (i.e., growth in debt or equity issuance) and Growth* (for growth in

other accounting items), following Hou, Xue, and Zhang (2020) and Jensen, Kelly, and

Pedersen (2023).21 The categories of Accruals, Payout, Issuance, and R&D are created

by us.

[Insert Table A.3.1 near here]

21The categories of Investment, Accruals, Payout and Issuance also include variables not measuring
changes in accounting items.
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A.2 Model Training Details

A.2.1 Gradient Boosting Regression Trees (GBRT) Algorithm

Gradient Boosting Regression Trees (GBRT)

Inputs: {(xi, yi)}Ni=1 and a differentiable loss function, L(·), such as mean square er-
ror/quadratic loss.
Step 1: Model Initialized with a constant value such as the mean value of the target
variable:

F0(x) = argmin
γ

N∑
i=1

L(yi, γ)

Step 2:
for m = 1 to M do

Calculate residuals (i.e., rim = yi−Fm−1(xi)) for each observation i, whcih is equiv-
alent to:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

Fit a decision tree to the pseudo residuals (ri,m) using xi:

Gm(x) = FittedTree({(xi, rim)}Ni=1)

Update the model prediction with the learning rate of ν:

Fm(x) = Fm−1(x) + νGm(x)

end for
Final model prediction:

FM(x) = F0(x) + ν
M∑

m=1

Gm(x)
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A.2.2 Model Pipeline

The pipeline of our valuation model is built using he ‘Pipeline’ class from the scikit-

learn Python package. The pipeline also acts as a wrapper for model-agnostic algorithms

including SHAP and ALE. Additionally, this enables the estimation of not only the effects

of the features used in the LightGBM (e.g., emission intensity variables) on the model

target (i.e, the market-to-book ratio) but also the effects of emission levels [tCO2e] on

Market Capitalization [USD].

The model pipeline comprised of 3 modules: 1) the GHG transformer, 2) feature

transformer, and (3) the target transformer. The GHG transformer houses operations

applied to the GHG-emission-related features only including transformation of emission

levels to emission intensity by dividing levels by revenues from the corresponding fis-

cal year. The feature transformer is implemented using the ‘ColumnTransformer’ class

and designed to apply specific transformations to a subset of model inputs. Within the

feature transformer, redundant features such as revenues and book equity are dropped.

These features are intentionally fed into the pipeline together with the training features

to eliminate potential errors due to incorrect data indexing. Lastly, the target trans-

former is implemented using the ‘TransformedTargetRegressor’ class wraps an estimator

and a mathematical operation (the log transformation) and its corresponding inverse op-

eration (the exponential transformation) which was applied to the target variable, the

market-to-book ratio, before and after model training and inference.
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A.2.3 Model Selection

The search for a close-to-optimal set of model hyperparameters is conducted using Bayesian-

optimization-based Optuna Python package. Bayesian optimization is arguably favored

over other common selection algorithms such as grid search in terms of convergence

speed and implementation difficulty. To make the optimization more stable and robust,

the learning rate is fixed to the default value of 0.1. Some hyperparameters such as

‘min split gain’ are discretized to reduce the span of the search space. A total of 1000

trial sets of hyperparameters are tested in the search. In each trial, the model is optimized

and evaluated using root-mean-square-error (RMSE). Early stopping is set to 10 rounds

with a minimum delta of 0.01 in improvement between optimization steps. The search

spaces of hyperparameters and selected set for each subsample valuation is summarized

in Table A.3.2.

[Insert Table A.3.2 near here]
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A.3 Additional Figures and Tables

Table A.3.1 List of Accounting Characteristics and their Clusters

Var Name Cluster

aliq at Liquidity scaled by lagged Assets Investment
at gr1 Asset Growth 1yr Investment
at gr3 Asset Growth 3yr Investment
be gr1 Book Equity Growth 1yr Investment
be gr1a Book Equity Change 1 yr scaled by Assets Investment
be gr3 Book Equity Growth 3yr Investment
ca gr1 Current Asset Growth 1yr Investment
ca gr3 Current Asset Growth 3yr Investment
capx at Capital Expenditures scaled by Assets Investment
capx gr1 CAPX 1 year growth Investment
capx gr1a Capital Expenditures Change 1yr Investment
capx gr2 CAPX 2 year growth Investment
capx gr3 Capital Expenditures Growth 3yr Investment
capx gr3a Capital Expenditures Change 3yr Investment
coa gr1a Current Operating Assets Change 1yr Investment
coa gr3a Current Operating Assets Change 3yr Investment
emp gr1 Employee Growth 1 yr Investment
fna gr1a Financial Assets Change 1yr Investment
fna gr3a Financial Assets Change 3yr Investment
intan gr1a Intangible Assets Change 1yr Investment
intan gr3a Intangible Assets Change 3yr Investment
inv gr1 Inventory Change 1 yr Investment
inv gr1a Inventory Change 1yr Investment
inv gr3a Inventory Change 3yr Investment
lnoa gr1a Change in Long-Term NOA scaled by average Assets Investment
lti gr1a Investment and Advances Change 1yr Investment
lti gr3a Investment and Advances Change 3yr Investment
nca gr1 Non-Current Asset Growth 1yr Investment
nca gr3 Non-Current Asset Growth 3yr Investment
ncoa gr1a Non-Current Operating Assets Change 1yr Investment
ncoa gr3a Non-Current Operating Assets Change 3yr Investment
nfna gr1a Net Financial Assets Change 1yr Investment
nfna gr3a Net Financial Assets Change 3yr Investment
nncoa gr1a Net Non-Current Operating Assets Change 1yr Investment
nncoa gr3a Net Non-Current Operating Assets Change 3yr Investment
noa gr1a Change in net operating assets Investment
oa gr1a Operating Assets Change 1yr Investment
oa gr3a Operating Assets Change 3yr Investment
ppeg gr1a Property, Plans and Equiptment Gross Change 1yr Investment
ppeg gr3a Property, Plans and Equipment Gross Change 3yr Investment
ppeinv gr1a Change in Property, Plant and Equipment Less Inventories scaled by lagged Assets Investment
sale gr1 Sales Growth 1yr Investment
sale gr3 Sales Growth 3yr Investment
saleq gr1 Quarterly Sales Growth Investment
sti gr1a Change in short-term investments Investment
capex abn Abnormal Corporate Investment Issuance
dbnetis at Net Debt Issuance scaled by Assets Issuance
dbnetis gr1a Net Debt Issuance Change 1yr Issuance
dbnetis gr3a Net Debt Issuance Change 3yr Issuance
debt gr1 Total Debt Growth 1yr Issuance
debt gr3 Total Debt Growth 3yr Issuance
debtlt gr1a Long-Term Debt Change 1yr Issuance
debtlt gr3a Long-Term Debt Change 3yr Issuance
debtst gr1a Short-Term Debt Change 1yr Issuance
debtst gr3a Short-Term Debt Change 3yr Issuance
dltnetis at Net Long-Term Debt Issuance scaled by Assets Issuance
dltnetis gr1a Net Long-Term Debt Issuance Change 1yr Issuance
dltnetis gr3a Net Long-Term Debt Issuance Change 3yr Issuance
dstnetis at Net Short-Term Debt Issuance scaled by Assets Issuance
dstnetis gr1a Net Short-Term Debt Issuance Change 1yr Issuance
dstnetis gr3a Net Short-Term Debt Issuance Change 3yr Issuance
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Var Name Cluster

eqis at Equity Issuance scaled by Assets Issuance
eqis gr3a Equity Issuance Change 3yr Issuance
eqnetis at Equity Net Issuance scaled by Assets Issuance
eqnetis gr1a Equity Net Issuance Change 1yr Issuance
eqnetis gr3a Equity Net Issuance Change 3yr Issuance
fincf at Financial Cash Flow scaled by Assets Issuance
fincf gr1a Financial Cash Flow Change 1yr Issuance
fincf gr3a Financial Cash Flow Change 3yr Issuance
fnl gr1a Financial Liabilities Change 1yr Issuance
lt gr1 Total Liabilities Growth 1yr Issuance
lt gr3 Total Liabilities Growth 3yr Issuance
ncl gr1 Non-Current Liabilities Growth 1yr Issuance
ncl gr3 Non-Current Liabilities Growth 3yr Issuance
ncol gr1a Non-Current Operating Liabilities Change 1yr Issuance
ncol gr3a Non-Current Operating Liabilities Change 3yr Issuance
netis at Net Issuance scaled by Assets Issuance
netis gr1a Net Issuance Change 1yr Issuance
netis gr3a Net Issuance Change 3yr Issuance
ni ar1 Earnings persistence Issuance
noa at Net Operating Asset to Total Assets Issuance
pstk gr1 Preferred Stock Growth 1yr Issuance
pstk gr3 Preferred Stock Growth 3yr Issuance
cop at Cash Based Operating Profitability scaled by Assets Profitability
cop atl1 Cash Based Operating Profitability scaled by lagged Assets Profitability
cop bev Cash Based Operating Profitability scaled by BEV Profitability
ebit at Operating Profit after Depreciation scaled by Assets Profitability
ebit bev Operating Profit after Depreciation scaled by BEV Profitability
ebit sale Operating Profit Margin after Depreciation Profitability
ebitda at Operating Profit before Depreciation scaled by Assets Profitability
ebitda bev Operating Profit before Depreciation scaled by BEV Profitability
ebitda ppen Operating Profit before Depreciation scaled by PPEN Profitability
ebitda sale Operating Profit Margin before Depreciation Profitability
fcf be Free Cash Flow scaled by BE Profitability
fcf ppen Free Cash Flow scaled by PPEN Profitability
fcf sale Operating Cash Flow Margin Profitability
fi at Firm Income scaled by Assets Profitability
fi bev Firm Income scaled by BEV Profitability
gp at Gross Profit scaled by Assets Profitability
gp atl1 Gross Profit scaled by lagged Assets Profitability
gp bev Gross Profit scaled by BEV Profitability
gp ppen Gross Profit scaled by PPEN Profitability
gp sale Gross Profit Margin Profitability
ni at Net Income scaled by Assets Profitability
ni be Net Income scaled by BE Profitability
ni emp Net Income scaled by Employees Profitability
ni sale Net Profit Margin before XI Profitability
niq at Quarterly Income scaled by AT Profitability
niq be Quarterly Income scaled by BE Profitability
nix be Net Income Including Extraordinary Items scaled by BE Profitability
nix sale Net Profit Margin Profitability
ocf at Operating Cash Flow scaled by Assets Profitability
ocf be Operating Cash Flow scaled by BE Profitability
ocf sale Free Cash Flow Margin Profitability
op at Operating profits-to-book assets Profitability
op atl1 Ball Operating Profit scaled by lagged Assets Profitability
ope be Operating Profit to Equity scaled by BE Profitability
ope bel1 Operating Profit scaled by lagged Book Equity Profitability
pi sale Pretax Profit Margin Profitability
cfoa ch5 Operating Cash Flow to Assets 5 yr Change Profit Growth
dgp dsale Change Gross Profit minus Change Sales Profit Growth
dsale dinv Change Sales minus Change Inventory Profit Growth
dsale drec Change Sales minus Change Receivables Profit Growth
dsale dsga Change Sales minus Change SG&A Profit Growth
ebit gr1a Operating Profit after Depreciation Change 1yr Profit Growth
ebit gr3a Operating Profit after Depreciation Change 3yr Profit Growth
ebitda gr1a Operating Profit before Depreciation Change 1yr Profit Growth
ebitda gr3a Operating Profit before Depreciation Change 3yr Profit Growth
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Var Name Cluster

fcf gr1a Free Cash Flow Change 1yr Profit Growth
fcf gr3a Free Cash Flow Change 3yr Profit Growth
gmar ch5 Gross Profit to Sales 5 yr Change Profit Growth
gp gr1a Gross Profit Change 1yr Profit Growth
gp gr3a Gross Profit Change 3yr Profit Growth
gpoa ch5 Gross Profit to Assets 5 yr Change Profit Growth
ni gr1a Net Income Change 1yr Profit Growth
ni gr3a Net Income Change 3yr Profit Growth
ni inc8q Number of Consecutive Earnings Increases Profit Growth
niq at chg1 Change in Quarterly Income scaled by AT Profit Growth
niq be chg1 Change in Quarterly Income scaled by BE Profit Growth
nix gr1a Net Income Including Extraordinary Items Change 1yr Profit Growth
nix gr3a Net Income Including Extraordinary Items Change 3yr Profit Growth
ocf at chg1 Operating Cash Flow to Assets 1 yr Change Profit Growth
ocf gr1a Operating Cash Flow Change 1yr Profit Growth
ocf gr3a Operating Cash Flow Change 3yr Profit Growth
ope gr1a Operating Earnings to Equity Change 1yr Profit Growth
ope gr3a Operating Earnings to Equity Change 3yr Profit Growth
roa ch5 ROA 5 yr Change Profit Growth
roe ch5 ROE 5 yr Change Profit Growth
sale emp gr1 Sales scaled by Employees Growth 1 yr Profit Growth
saleq su Revenue Surprise Profit Growth
tax gr1a Effective Tax Rate Change 1yr Profit Growth
tax gr3a Effective Tax Rate Change 3yr Profit Growth
ap gr1a Accounts Payable Change 1yr Growth*
ap gr3a Accounts Payable Change 3yr Growth*
cash gr1a Cash and Short-Term Investments Change 1yr Growth*
cash gr3a Cash and Short-Term Investments Change 3yr Growth*
cl gr1 Current Liabilities Growth 1yr Growth*
cl gr3 Current Liabilities Growth 3yr Growth*
cogs gr1 Cost of Goods Sold Growth 1yr Growth*
cogs gr3 Cost of Goods Sold Growth 3yr Growth*
col gr1a Current Operating Liabilities Change 1yr Growth*
col gr3a Current Operating Liabilities Change 3yr Growth*
dp gr1a Depreciation and Amortization Change 1yr Growth*
dp gr3a Depreciation and Amortization Change 3yr Growth*
ol gr1a Operating Liabilities Change 1yr Growth*
ol gr3a Operating Liabilities Change 3yr Growth*
opex gr1 Operating Expenses Growth 1yr Growth*
opex gr3 Operating Expenses Growth 3yr Growth*
rec gr1a Receivables Change 1yr Growth*
rec gr3a Receivables Change 3yr Growth*
sga gr1 Selling, General, and Administrative Expenses Growth 1yr Growth*
sga gr3 Selling, General, and Administrative Expenses Growth 3yr Growth*
txditc gr1a Deferred Taxes and Investment Credit Change 1yr Growth*
txditc gr3a Deferred Taxes and Investment Credit Change Growth*
txp gr1a Income Tax Payable Change 1yr Growth*
txp gr3a Income Tax Payable Change 3yr Growth*
cash lt Cash Balance scaled by Total Liabilities Financial Soundness
cl lt Current Liabilities scaled by Total Liabilities Financial Soundness
debtlt be Long-Term Debt to Book Equity Financial Soundness
debtlt debt Long-Term Debt scaled by Total Debt Financial Soundness
debtst debt Short-Term Debt scaled by Total Debt Financial Soundness
ebitda debt Operating Profit before Depreciation scaled by Total Debt Financial Soundness
fcf ocf Free Cash Flow scaled by Operating Cash Flow Financial Soundness
int debt Interest scaled by Total Debt Financial Soundness
int debtlt Interest scaled by Long-Term Debt Financial Soundness
inv act Inventory scaled by Current Assets Financial Soundness
lt ppen Total Liabilities scaled by Total Tangible Assets Financial Soundness
nwc at Working Capital scaled by Assets Financial Soundness
ocf cl Operating Cash Flow scaled by Current Liabilities Financial Soundness
ocf debt Operating Cash Flow scaled by Total Debt Financial Soundness
opex at Operating Leverage Financial Soundness
profit cl Profit before D&A scaled by Current Liabilities Financial Soundness
rec act Receivables scaled by Current Assets Financial Soundness
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adv sale Advertising scaled by Sales Miscellaneous
age Age Miscellaneous
earnings variability Earnings Variability Miscellaneous
ni ivol Net Income Idiosyncratic Volatility Miscellaneous
niq saleq std Net Income to Sales Quarterly Volatility Miscellaneous
nri at Non-Recurring Items scaled by Assets Miscellaneous
ocfq saleq std Operating Cash Flow to Sales Quarterly Volatility Miscellaneous
pi nix Taxable income-to-book income Miscellaneous
roe be std ROE Volatility Miscellaneous
roeq be std Quarterly ROE Volatility Miscellaneous
spi at Special Items scaled by Assets Miscellaneous
staff sale Labor Expense scaled by Sales Miscellaneous
tax pi Effective Tax Rate Miscellaneous
xido at Extraordinary Items and Discontinued Operations scaled by Assets Miscellaneous
div at Total Dividends scaled by Assets Payout
div gr3a Dividend Payout Ratio Change 3yr Payout
div ni Dividend Payout Ratio Payout
eqbb at Net Equity Payout scaled by Assets Payout
eqbb gr1a Equity Buyback Change 1yr Payout
eqbb gr3a Equity Buyback Change 3yr Payout
eqis gr1a Equity Issuance Change 1yr Payout
eqnpo at Equity Net Payout scaled by Assets Payout
eqnpo gr1a Equity Net Payout Change 1yr Payout
eqnpo gr3a Equity Net Payout Change 3yr Payout
eqpo gr1a Net Equity Payout Change 1yr Payout
eqpo gr3a Net Equity Payout Change 3yr Payout
cowc gr1a Current Operating Working Capital Change Accruals
cowc gr3a Current Operating Working Capital Change 3yr Accruals
nwc gr1a Net Working Capital Change 1yr Accruals
nwc gr3a Net Working Capital Change 3yr Accruals
oaccruals at Operating Accruals Accruals
oaccruals ni Percent Operating Accruals Accruals
taccruals at Total Accruals Accruals
taccruals ni Percent Total Accruals Accruals
ap turnover Account Payables Turnover Efficiency
at turnover Asset Turnover Efficiency
inv turnover Inventory Turnover Efficiency
rec turnover Receivables Turnover Efficiency
sale be Sales scaled by Total Stockholders’ Equity Efficiency
sale bev Sales scaled by BEV Efficiency
sale emp Sales scaled by Employees Efficiency
sale nwc Sales scaled by Working Capital Efficiency
ap days Days Accounts Payable Outstanding Liquidity
ca cl Current Ratio Liquidity
caliq cl Quick Ratio Liquidity
cash at Cash and Short Term Investments scaled by Assets Liquidity
cash cl Cash Ratio Liquidity
cash conversion Cash Conversion Cycle Liquidity
inv days Days Inventory Outstanding Liquidity
rec days Days Sales Outstanding Liquidity
be bev Common Equity scaled by BEV Capitalization
cash bev Cash and Short-Term Investments scaled by BEV Capitalization
debt bev Total Debt scaled by BEV Capitalization
debtlt bev Long-Term Debt scaled by BEV Capitalization
debtst bev Short-Term Debt scaled by BEV Capitalization
pstk bev Preferred Stock scaled by BEV Capitalization
at be Book Leverage Solvency
debt at Debt-to-Assets Solvency
debt be Debt to Shareholders’ Equity Ratio Solvency
ebit int Interest Coverage Ratio Solvency
rd5 at R&D Capital-to-Assets R&D
rd at R&D scaled by Assets R&D
rd sale R&D scaled by Sales R&D
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Figure A.3.1 Number of Observations by GHG Reporting Status

This figure depicts the number of non-micro-cap global stocks with reported Scope 1 or 2 GHG emission
levels (“Reported”) and stocks with Scope 1 or 2 GHG emission levels estimated by Trucost (“Estimated”)
as well as stocks with either missing Scope 1 emission value or missing Scope 2 emission value over the
2003-2022 period. Stocks with missing values for both Scope 1 and Scope 2 emission levels are excluded
from the sample.

Panel A: Scope 1 Emission Data

Panel B: Scope 2 Emission Data
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Table A.3.2 Hyperparameter Information

This table presents the hyperparameters involved in our training, their search spaces, their default values
in LightGBM, and the selected values for three models (separated by ’|’).

Parameter min max step size default selected
n estimators - - - 100 53|56|69
extra trees - - - False True
num leaves 2 256 1 31 256|251|247
subsample 0.1 1.0 0.1 1.0 0.8|1.0|1.0

subsample freq 1 7 1 0 3|3|6
min child samples 64 512 1 20 64|76|64
min split gain 0.0 0.6 0.1 0.0 0.0|0.0|0.0

max bin 10 255 1 255 130|165|220
reg alpha 10−8 10.0 log, continuous 0.0 .0013|.000038|1.46 ∗ 10−7

reg lambda 10−8 10.0 log, continuous 0.0 .00048|.000012|0.67
min child weight 10−3 10.0 log, continuous 10−3 3.76|0.26|3.56

max depth -1 32 1 -1 19|21|31
path smooth 0.0 1.0 continuous 0.0 0.55|0.50|0.44
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Figure A.3.2 Feature Importance: U.S. Sample

This figure depicts the time-varying importance of Scope 1 emission intensity (left) and Scope 2 emission
intensity (right) in determining log(M2B) for U.S. firms. The importance is measured by the rank of
Scope 1 or 2 emission intensity in each subsample model according to absolute SHAP values, “split” and
“gain,” where “split” refers to the number of times a variable is used to make a split in decision trees,
and “gain” refers to the reduction in training loss resulting from making a new split point.
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Figure A.3.3 Feature Importance: Reported GHG Values & Trucost Estimates

This figure depicts the time-varying importance of Scope 1 emission intensity (left) and Scope 2 emission
intensity (right) in determining log(M2B). The importance is measured by the rank of Scope 1 or 2
emission intensity in each subsample model according to absolute SHAP values, “split” and “gain,”
where “split” refers to the number of times a variable is used to make a split in decision trees, and “gain”
refers to the reduction in training loss resulting from making a new split point. We expand the GHG
reporter sample by including stocks with GHG emission values estimated by Trucost.
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